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A workable algorithm is proposed for reducing the Poincar&-Pontriagin generat- 

ing equation which determines periodic solutions for small perturbations of two- 
dimensional Hamiltonian systems to the special (standard) form for the class of 
equations 

x” + a2 + pz3 = Ef (5, z’), E < 1 

where f is a polynomial. As an example of application, the problem of 
estimating the number of cycles, in particular of stable periodic solutions, i. e. 

of auto.-oscillating modes, is considered. Results are illustrated on a specific 
example. 

1. Let us consider the class of equations 

2” + ax + /3z3 = of (5, 5’) 

or of equivalent form systems 

X’=y, y’= -Ux-+c3+Ef(X,~) 

m 71 

(1.1) 

f(X7 Y) = 2 2 ai$Yj 
j=l iso 

where a and fl are nonzero parameters, E is a small parameter, and Uij are con- 

stant coefficients. 
An algorithm is proposed for reducing the Poincar&-Pontriagin generating equation 

to some special form, It was shown in [l] that a generating equation can be represent- 
ed in the form of an integral of some expression dependent on perturbations and the 
periodic solution of the unperturbed input system. Integration is carried out along the 

unperturbed system closed trajectory free of singular points (equilibrium states). 
Below, the input integral form of the generating equation is expressed in terms 

of elementary functions and complete elliptic integrals of the first and second kind. 
In spite of the different behavior of solutions of the unperturbed system, with various 
combinations of signs of a and fl, the generating equation always reduces to the 
same form, which we shall call standard. In specific problems the standard form was 

directly calculated, for instance in [2]. 
We shall indicate all possible phase patterns of the unperturbed system 3. = Y, 

y’ = -ax - px3. Incases a) a>O,/3>0 and b) a > 0, p -c 0 
we have a single cell filled by closed trajectories, and in cases c) a < 0, /3 > 0 
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there are three cells in whose boundary pass two separatrix loops (, figure of eight”), 

Case d) a < 0, fl < 0 is of no interest. 

In case a) h E (0, co) correspond to closed trajectories ys / 2 + axa / 2 
$ Bx4 I 4 = h , in case b) h E (0, -a2 / 4b) and in case c) -‘-h E (-a” / 
48, co). values of h E (-,a2 / 40, 0) and h’e(O, 00) correspond to trajector- 

ies lying, respectively, in- and outside of the figure of eight. 
Let O,‘g (h) be the expression for the standard form when /3 > 0, h > 0, 

@;K’ (h) , when a > 0, fi < 0, CD$ (h) , and when a ( 0, fi > 0, - a2 / 

4#l\< h < 0. 

Theorem. The standard form of the generating equation of system (1.1) is 

(1.2) 

(1.3) 

where summation is carried out over odd j from unity to m; A$ and R$ are 
algebraic functions; Bff; s B,,; = t2) - 0 B@! depends only on coefficients a21+1,j7 

I = 0, 1, 2, . . ., [(n - 1) / 21: nn> 1; K (k) and E (k) are complete 
elliptic integrals of the first and second kind, respectively; k = k (h) is the modulus 
of elliptic integrals; P&2jtj(kz) and Q$/*]+j(k”) are polynomials of power [n / 21 
+ j in k2 which depends on coefficients a22,jr l = 0, 1, 2, . . ., [n / 21, 

n > 0, and[x]is the integral part of number X. 

Proof of this theorem a ears in Sect. 2, where an algorithm of constructing poly- 

nomials P$,//l+j and QiTz]+j, which does not require calculation of integrals, is 

also proposed. 

2. Let us transform (1.1) to a more convenient form. In regions G filled by 
closed trajectories of the unperturbed system and separated from separatrices we pass 
from variables x, y to variables I and 0. which represent action and angle, respect- 
ively, defined by 

I=& 
$ 

y(x,h)dx, 8= as!$z) 

S(x, I) = fy(x, h(I))dx 

y. (x, h) =72 (h - ax2 / 2 - bx4 / 4)1*/z 

where integration is carried out along the closed trajectory of the unperturbed system, 

and x0 is the coordinate of point x of that trajectory, 

we represent the transformation (x, y) + (I, f3) in the form 

2 = x (I, e), y = Y (I, 0) (2.1) 

where functions X and Y are periodic with respect to 6 of period 27~. The 

substitution (2.1) transforms system (1.1) to 

I’ = E@ (I, e>, 0 (I, e) = f (X, Y)Xe’ (2.2) 
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8’ = 6) (I) -f- FQ (I, e), 0 (I) = dh (I) / dl 

Q (I, cl)== -f (X, Y )X1 
where 0 and Q are functions analytic in G and periodic with respect to 0 of 

period 2n , and o (I) is the frequency on closed trajectories of the unperturbed 
system. Note that in regions G o (I) > 0. Expanding function CD in Fourier ser- 
ies 

(1) (I, 0) z 5 @‘R (I) exp (i/W) 
r=--m 

carrying out in (2.2) the substitution 

and neglecting terms of order e2, we obtain the system 

u’ = ro, (U), 8’ = 0 (U) + 0 (8) 

‘?I 

‘D,(u) = & 1 (I+, epe = -&F$, Y)xe’de 
0 0 

(2.31 

Thus the investigation of the input system with an accuracy to terms of order c2 

reduces to the problem of investigation of the single differential equation 

u’ = &CD0 (U) (2.4) 

The equation 

0, (U) f 0 (U (IL)) = 0 (2.5) 

which determines the equilibrium state of (2.4) is a generating equation. For fairly 

small F i; 0 the number of limit cycles in G does not exceed the number of real 

roots of Eq. (2.5). 
It follows from (2.5) that the determination of mD, (h) requires the knowledge 

of the solution of the unperturbed system 

2’ L ?/ = dH, 
%I 

y’=: _n~_ps3~_g, 

From the integral H = h we have 
X 

(2.6) 

where xl2 and x2’ are the roots of equation 

h - ax2 / 2 - px” / 4 = 0 

Setting to = 0 and 
0, from (2.6) we obtain 

x0 = x, with fi > 0 and z. = 0 with a > 0, @ < 

B > 0, h > 0. t = (2 / /-?l)‘/2(5,2 - x22)-W (cp, k) (2.7) 

k = xl (x,~ - xz2)-‘/z, cos cp = 5 / 51 

a > 0, p < 0, t = (-2 / ~)“2~s-~F (cp, k) 

k = x1/x2, sin cp = x/x, 

a.<O, B>O, -a2! 48 < h < 0, t = (2 / fl)‘/2x1-lF (9, k) 



On auto-oscillations in two-dimensional dynamic systems 647 

k = (x12 - 522)*kr1-*, (1 - k2 sin 2cp)‘i* = z / x1 

where F (rp, k) is an ~~omplete elliptic integral of the first kind. Using the known 
relations for Jacobi’s functions, form (2.7) (with 8 = ot) we obtain 

p > 0, h > 0, 5 (0) = x1 en (2K8 I n) (2.8) 
w = 3t (@ I 2)'/*(s12 - a~~~)'/' / (2K), xl = [2ixk2 ,’ (6 (l-2k2))l"* 

a > 0, f3 < 0, 5 (0) = q sn (2K8 / n) 
w = n f-f! f 2)1& / (2K), x1 = Z-2ak2 / (f3 (1 + k2))ltiz 

CL < 0, f3 > 0, h < 0, r (0) = LZ+ dn (KB / n) 
o = x (fl / 2)‘kq / K, q = t--2~. / (fl (2 - k”))l’l~ 

D accordance with (2.8) we distinguish three cases: 

@)o (u) = CD (k (h)) = CD:$ (k), s = 1, 2, 3, 

p>o, h>O, s=l; a>O, p<o, s=2 

cx < 0, f3 > 0, h < 0, s - 3 

To prove the theorem we use the expression for @, in (2.3). First, we consider 
the case of even n and j = 1. 

Let fi > 0 and h > 0. In accordance with (2.3) we have 
n 

If* = ‘r [(l - k2) cn* cp + (2kZ - 1) c#‘q, - k2 cn*+%pl dcp 
6 

Properties of elliptic functions imply that Ii, = 0 when i is odd. Applying 
1 times the recurrent formula [S] 

(2.9) 

I+ 

4K 4k 

s 
cnm+“cp dq = fm + ‘f fi -- k2) 

(VI -t 3) kz f 
cn”T dq _ 

0 0" 

4K (m + 2) (1 - 2KL) 

(m + 3) k3 s 
cn*+?e, dq 

0 

we obtain the formula 

1 21,l = & [(k’P:t;l,’ (k) - (1 - k2) Q&i(k)) K (k) + Q&t (k) E (@I (2-W 

where P$;‘,‘(k) and Q&#‘(k) are polynomials of power 21 + 2 that contain 
only even powers of k. Hence we subsequently use the notation 

p = P, Pk:) (p) zis P$$ (k), Qj:;"' fp) cz Q$$ (k) 

Since K (k) and E (k) can be represented in the form of power series for Q < 

k ( 1 that contain only even powers of k, hence K = K (p) and E = E (p). 
The calculation of Izt, I yields the following algorithm of derivation of poly- 

nomials P{:;“(p) and Qi:;” @) 
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(2.11) 

p"(p)= 2 (1 - p)/(2l+ 3), Qi""(p) = (2p - I)/(21 + 3) 
From (2.10) we have 

Izr,l = (~/P'+~)U'&?(~)K + Q%'(P) El (2.12) 

Pl’k? (P) = #‘k;‘(P) - (I- p) Qk? (p), Qk? (P) = Ql-';," (PI 

Polynomials P&? and Ql+l W) have the following properties. 

1”. ps -k QO = 0, where p0 and q. 

and Q$fl,“’ , 
are the free terms of polynomials Pit,“’ 

respectively, as implied by (2.12). 

2’. pl+z = 0, where p~+~ is the coefficient at the leading term of polynomial 

Pf?;) . 

P r o o f. From (2.12) we have P&Z = Pi:: + &it where &‘, and i&i 
are coefficients at the leading terms of polynomials p&j) and Ql;:’ , respectively. 

If follows from (2.11) that prW + qIW = 0 (I = 0). Further proof is by induction. 
Let the condition p1+2 = 0 be satisfied for I = i - 1, i.e. pi(‘) i pi(‘) = 0. 
we shall, show that then p$ i- q$ = 0 (i < n / 2). Using (2.11) we obtain 

p% + &!I = 
(If 2f - (2i - 1) 

- qi 
22 - (Zi - 2) (1) 

21 - (2i - 3) + Pi” + 2 21 _-(2i_33)Qi = 0 

property 2” is proved. 
On the strength of property 2 we substitute Pi?:’ for P&‘~‘. 

3”. PI:;2’ (1) = 0. This property follows from (2.11) and (2.12). 

From (2.12) and (2.9) we have 

G?(p) = 
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(2.15) 
p~Z,l, = _ 21 - (2i - 1) 

1 21 - (21- 3) Qf? i = 1, 2, . . . . I 

Q I";," = ppp;'(p) + ;-;: -(j + p) Qy**) 

P?’ (P) = 2 I (2t + 3), Q:“‘(p) = - (1 + p) /(21+ 3) 
Since (2.15) imp&s that polynomials p$s’ and Q!ff' have the properties 1 

and 2 , hence in conforms with (2.13) the ~~yno~a~ P(s) and Q (2) n/2+1 n/2+1 

also have these properties. 

in the third case, when a < 0, B > 0, --c~s I 48 < h < 0, we have 

@%!(p) = & (2g+m ( z” J+z)!a x 

Iwflb>kn v%-mL,*+1 (P)] 

n/2-1 

J-b+1 (P> = z azt+l,J3 
I=0 

n’2-(t+1) (p) (Pt.+, (p) + + Qttl (P)) 

where the plus sign corresponds to the region lying inside the right-hand separatrix 
loop (z > 0) and the minus sign to the region inside the left-hand separatrix loop 

(t ( 0). The polynomials Pi:::;” (p) and Qi”;,” (p) are determined using the 
recurrent formulaa 

p(S,l, _ 2E - @i - 1) 
'1+1 - 21_~2i_3~(~-1)Q~3’1’, i = 1.2. . . . . l 

Q;$;;“’ z ,!“I”’ + “2’; I;; 1;; (2 _ p) Qyll) 

Pf”“‘(p) = 2 (p - 1) / (21+ 3), Qisq” (p) = (2 - p) / 12Zf 3) 

and posess properties 1 and 3 . 

The polynomials PI+1 (p) and Ql+l (p) in the expression for R,lz+l (p) are 
determined by the recurrent formulas 

‘itI = i__it_ 2 l-i+i(p-qQi 

Qi+l = Pi + ; I; 1:; z ;(2 - p) Qi, i = 1, 2, . . ., z 

WP~=(P--)/(~+~), Qd~)==(2-d/2(Z+2) 

Derivation of the standard form for j > 1 does not in principle differ from that 

for j = 1. The final results are as follows. 

fnthecaseof @>O, h>O wehave 

@$I (p) - 1 (#n+j+*)‘2 ( 1 & )(~+‘j+r)” F$ (p) (2.16) 

{Ltj+Mtj, Ntj+Stj), b= z+r+k, b>2 
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frk E (- 1)~CG+*),2C~;+,)~2p(~+~)/r-r (1 -- p)(j+lwf 

Lli = drn I(1 + j - 2jp) pcj-l)!2 (1 - p)(j+1)/2 / 21 
Nlj = 610 [(i + j) (2~ - 1) p(i-1)/2 (1 - p)+W j 21 
Mlj = a11 [ _ @+1)/a (1 - p)(j+3)/2], Slj = a11 [p(-l+l)/z (1 - p)(i+l)l2] 

Pp(p) = &y’(p) - (1 - p) QgjQ3), @y’(p) 3 Qpy(p) 

where 61i is the Kronecker delta. Expressions for Pb!$ (p) and &‘f’ (P) are 
determined by the recurrent formulas 

This yields the method for transforming the formulas obtained above for j = 1 to 
suitthecaseof j> I., Thusfor a>O, p(O wehave 

and for a < 0, fi > 0. h < 0 

al;?(p) _ & i$jv~+j+l):a ( 

[2F$’ i_ n l/z:, (0) Rn/s+j (I))] 

(2.19) 

Using the notation Bz (P) = t n l/z3 (P) Rn/s+j (P), from (2.16), (2.13~ 
and (2.19) we obtain formula (1.3). For even j we have CD!_! (p) z 0, s = 1, 2, 
3. Polynomials ZJg)ls+j, and QI;;j,+j, s = 1, 2, 3 also poses~ properties 1 and 3. 

The case of odd n is similary considered. To do this it is sufficient to substitute, 
retaining the notation (DC”) n,, A$,’ and BE;, s = 1, 2, 3, in respective expressions 

n - 1 for n and carry out summation in Rc,_l),2+j with respect to l from 0 
to (n - I)/ 2. The theorem is proved. 

3. In accordance with (2.16) and (2.18) the problem of obtaining an estimate of 
the number of real roots of the generating equation @$) (p) = O., s = 1, 2 reduces 
to that of estimating the number N of real roots of the equation 

Iq(p)=O, O<p<l, s=1,2 (3.1) 

In the case of s = 3 the problem reduces to estimating the number of real roots 
of the equation 

2Fc3j (p) + x Jfz,(p) R n3 - n/z*j (P) = 0 (3.2) 

When asl+l,i = 0, 1 = 0, 1, 2, . , .,n/ii?-1, Eq.(3.2) assumes the form 
J’$ (p) = 0, and when a,l,j = 0, 1 = 0, 1, 2, , . ., n / 2 it reduces to the 
algebraic equation Rn/n+j (p) = 0. in the latter case N < n / 2 -I- j. 

Let us estimate the number N, of double roots of equation F(,sj) (p) = 0, 0 ( 
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pcl, s= 1, 2, 3. Note that function F$ is analytic when 0 < p ( 1. 
Differentiation of F$$ (p) yields 

dmF~~(P)ldpm=P~tK+Q~~E, m--$,2, . . . (3.3) 

The double roots of equation FFj (p) = 0, s = 1, 2, 3 satisfy the system 

F$(p) = 0, F$jj_1(p) = 0 (3.4) 

Multiplying the first equation of this system by pw 
n/2+j-19 the second by Pg)/z+j 

and subtracting the first from the second, we obtain the system 

The number of nonzero roots of system (3.4) does not exceed the number of nonzero 
roots of system (3.5). Since on the strengul of properties 1 and 3 and formulas (3.3) 

p(S) . n / 2+1-1 and Q$ 2+j_1 are polynomials of power n / 2 i- j - 1, hence the 

second of equations of system (3.5) is a polynomial of power n. + .2j - 1, 
It follows from (2.13) and (2.17) that 

2p + q = 0 > f-p& - p$$$J = 0 (3.6) 

where p and Q are coefficients at leading terms of polynomials P$j2+j and Q$)s+i 
J respectively; ~~($1 and qofs) are the free terms of polyno~a~ p$/z+i and Q$,z+j; 

p,,l(s) and q,,r(s) are the free terms of polynomials P$2++_l and Q$+j_l , 
respectively, and s = 2, 3. When s = 1 , the coefficient at the leading term 

of the second of Eqs. (3.5) is by virtue of (3.6) zero, and when s = 2, 3, the free 
term vanishes. Thus the estimate N, < n $- 2 (j - 1) is correct. From this 

we obtain the estimate N < 2N, + 1 when s=1,2, In the quasilinear case 

with /3 =O wehave N<n/2+jW1, 
Note that d@,“j’ (p*) / dp = F:,$el (p*), where p* is the root of the generat- 

ing equation. If gF$,)j_l (p*) (+ / do) > 0 (< o), the state of equilibrium u = 
u (p*) of Eq. (2.4) is unstable (stable). 

As an example we consider the equation 

2’. + az + fiz” = e (aor + uri5 + a&)z’ (3.7) 

Using the expression for @,,(*), s = 1, 3 and the investigations of behavior of solu- 
tions in the neighborh~ of separatrices of the un~rturbed system, we establish the 

over-all topological structure of behavior of the solution of Eq. (3.7) when a < 0, 
b>O.weassume&at a,r#O,a,r=1,a=-1,and b=l. Thecaseofar,=O 
with a > 0 was considered in [4]* and for any arbitrary a # 0 in [S, 61. Let us 

represent (3.7) in the form 

5‘ = P fs, Y) = y, Y’ = Q fx, Y* d (3.8) 

Q = x - .z3 $- E (1 .-t- alI5 + ‘++ 
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and investigate the behavior of solutions in the small neighborhood of the unperturbed 
separatrix. Note that since the saddle parameter o, s P,' -I- Qzr' &_,, = E # 0, 
hence not more than one limit cycle can emerge from the separatrix loop for 

Yl 
any 

5 
- 

Fig., 1 Fig. 2 

Fig. 3 

Fig. 4 

fixed e # 0 [‘7]. To solve the problem of relative position of separatrices we use the 
results of investigations [S]. We denote by EAT+ the parameter which defines with 

an accuracy to terms of order E’ the distance between the respective stable and un- 

stable separatrices in the region of x > 0, and by $,A,- in the region of x < 0. 

According to [8] we have oci 

e = _s, 11 + %l% (t) + %l%* @)I Y8 0) & 

where I* (t), y. (t) is the solution of the unperturbed system on the separatrix. 

From (2.8) we have z. (t) = f 2/g (1 / ch r), Y, 0) = F (sh t / ch%), k = 1, 

hence 

+=2 $zk+l%s+&,] 
E 

Using equations AI* = 0 we determine 
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%i+ =-%l-= -a (5 f 4a,J I (Em?% 
When %l = %1+ _t 0 (8) , the solutions of system (3.8) have the right-hand loop 

of the separatrix, and when ali= ai,- -/- 0 (8) its left-hand loop. 
Investigation of solutions in regions inside the unperturbed separatrix (figure of 

eight) is carried out using the standard form (I.&@) and outside it using (Fuji. 
The real roots of equations cDZ,(s) (p) = 0, $ = t,3 that determine h and the corres- 

ponding closed curves of the unperturbed system from which emerge Iimit cycles for 
small E ef; 0 , depend on parameters ai1 and @21* it is, therefore, possible 
to divide the plane ali, as1 in two regions that correspond to different numbers of 
limit cycles in the perCurbed system, It is established that for Eq. (3.7) the maximum 
number of limit cycles is three, 

The bifurcation boundaries, which are generally determined with an accuracy to 
terms of order =a, divide the plane a1i, azt in 32 regions. The most typical rough 
phase patterns of system (3.8) are plotted in Figs, l-3, Part of the finer topological 
siructure.s appear in Fig.& 

Although in the symmetric case, when ali= 0, we have Q)sl (1) ==rD,i@) (1) 
and the generating equation actnaIly determines limit cycles up to the separatrix (fig- 
ure of eight in Fig. 4, a), it is not so in the asymmetric case, when all # 0, be- 
cause of @Zpj (1) # @,,W , when ati # 0 a limit cycle emerges from the 
separatrix loop of the perturbed system (Fig. 4, b). This property cannot be establish- 
ed by the method of small parameter. 

Fig, 4, c corresponds to the fine structure that has a separatrix loop and a double 
limit cycle, Transition from Fig. 1 to Fig, 2 takes place through the fine structure 
shown in Fig, 4, b (4, a). 
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